Answer on question \#54450, Physics / Electric Circuits

Question A 12 cm wire is given a shape of a right angled triangle ABC having sides $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$. The resistance between the two ends (AB,BC,CA) of the respective sides are mesured one by one by a multi meter. What is rhe the ratio of resistance.

Solution As all of $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ are made of the same material and have same cross-section area, we consider dependence of resistance only on the length. Lets say $\mathrm{AB}=3, \mathrm{BC}=4$ and $\mathrm{CA}=5$. In every measurement two sides in series will be connected to the third one in parallel.
When AB is measured, resistance is

$$
R_{A B}=\frac{3 k \cdot(4 k+5 k)}{3 k+4 k+5 k}=2.25 k
$$

where k is some coefficient. When BC is measured, resistance is

$$
R_{B C}=\frac{4 k \cdot(3 k+5 k)}{3 k+4 k+5 k} \approx 2.66 k
$$

When CA is measured, resistance is

$$
R_{C A}=\frac{5 k \cdot(3 k+4 k)}{3 k+4 k+5 k} \approx 2.92 k
$$

Hence, $R_{A B} / R_{B C} / R_{C A}=2.25 / 2.66 / 2.92=27 / 32 / 35$

