Answer on Question \#54367-Physics-Other

Four corners each equal to Q are placed at the four corners of the square and a charges q is placed at the center of the square. If the system is in equilibrium then the value of q is
(1) $Q / 2(1+2 \sqrt{ } 2)$
$(2)-Q / 4(1+2 \mathrm{~V} 2)$
(3) $Q / 4(1+2 \sqrt{ } 2)$
(4) $-Q / 2(1+2 \sqrt{ } 2)$

Solution

Consider the equilibrium of charge Q at A.

For equilibrium

$$
\begin{gathered}
F_{B D}+F_{C}=F_{O} \\
\frac{1}{4 \pi \varepsilon_{0}} \frac{\sqrt{2} Q^{2}}{a^{2}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{2 a^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{-2 q Q}{a^{2}} \\
q=-\frac{Q}{4}(1+2 \sqrt{2}) .
\end{gathered}
$$

Answer: (2)-Q/4(1+2V2).

