Answer on question \#54317, Physics / Electromagnetism

Question An electron moving at right angles to a uniform magnetic field completes a circular orbit in $10^{-6} \mathrm{sec}$. calculate the value of magnetic field.please give explaination for the formula that used.

Solution Lorenz force acting on electron will cause centrifugal acceleration. Hence, we can write:

$$
q v B=m a_{c}=m \nu^{2} r
$$

Angular speed is related to period as $\nu=2 \pi / T$. Therefore

$$
\begin{aligned}
q v B & =m \frac{4 \pi^{2}}{T^{2}} r \\
q \nu r B & =m \frac{4 \pi^{2}}{T^{2}} r \\
q B & =m \frac{4 \pi^{2}}{T^{2}}
\end{aligned}
$$

Then the field is

$$
B=\frac{m}{q} \frac{4 \pi^{2}}{T^{2}}=\frac{9.1 \cdot 10^{-31}}{1.6 \cdot 10^{-19}} \frac{4 \pi^{2}}{10^{-12}} \approx 224.3 T
$$

