## Question \#54316, Physics / Electromagnetism |

the magnitude of velocities of two alpha particles $A$ and $B$ entering a uniform magnetic field perpendicularly, are in the ratio 6:1. on entering the field , they move in circular paths. find out the ratio of radii of their paths.
solve it by giving proper explaination about the formula.

Answer:

The force exerting on the charged particles moving in the magnetic field is defined by the equation:
$F=q v B$, where $q-$ the charge, $v-$ the velocity and $B$ - the magnetic field

At the same time the centripetal force acting on the object is:
$F_{c}=\left(m v^{2}\right) / r$

Since these forces have the same magnitude the final equation should be:
$q v B=\left(m v^{2}\right) / r$,
$r=(m v) /(q B)$

Therefore for particles having the same mass and charge, which are travelling in the same magnetic field, their radii are proportional to their velocities:

For alpha particle $A: r(A)=[m /(q B)] v(A)$

For alpha particle $B: r(B)=[m /(q B)] v(B)$
$r(A) / r(B)=v(A) / v(B)=6 / 1=6$
The radius of trajectory for $A$ is in 6 times larger than that for $B$.

