Answer on Question\#54225, Physics / Other

The motion with uniform acceleration is $a=\frac{d v}{d t}=$ const. Using the last equation, $d v=a d t$, and integrating from both sides, obtain $v=a t+v_{0}$, where v_{0} is the velocity at $t=0$.
Since $v=\frac{d x}{d t}$, using expression for velocity derived above, obtain $d x=\left(a t+v_{0}\right) d t$. Integrating from both sides, obtain $x(t)=x_{0}+v_{0} t+\frac{a t^{2}}{2}$, where x_{0} is the position at moment $t=0$. Thus, the displacement covered at nth second $t=n$ of motion is $v_{0} n+\frac{a n^{2}}{2}$.

