Answer on Question\#54192-Physics - Mechanics - Kinematics - Dynamics

A 4 kg block is kept on a smooth frictionless surface. Another block of mass $m=2 \mathrm{~kg}$ is kept above this block. The coefficient of friction between the two blocks $n=0.5$. If the lower block ($M=4 \mathrm{~kg}$ block) is being pulled by $F=24 \mathrm{~N}$ force, find the force of friction acting between the two blocks.

Solution:

Let's suppose that the upper block is not sliding, then both blocks have the same acceleration which is equal

$$
a=\frac{F}{M+m}=\frac{24 \mathrm{~N}}{4 \mathrm{~kg}+2 \mathrm{~kg}}=4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

For this to be true the force of friction must be smaller than it's critical value

$$
F_{c}=m \cdot g \cdot n=2 \mathrm{~kg} \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 0.5=10 \mathrm{~N},
$$

where $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ - is the acceleration due to gravity. The force of friction in this case is equal to the inertial force

$$
F_{i}=m \cdot a=2 \mathrm{~kg} \cdot 4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=8 \mathrm{~N}
$$

Since $F_{i}<F_{c}$, the upper block isn't sliding and the force of friction is equal to the inertial force. Answer: 8N.

