

Answer on Question#54175 - Physics - Other

A recovery vehicle is towing a broken down lorry, of mass $m = 42$ tons, up an incline of 1 in 10. Both vehicles start from rest and accelerate constantly up the incline at $0.1 \frac{\text{m}}{\text{s}^2}$. If the resistance to motion (not the gravitational component) is: $F = 820 + 0.06 \cdot v^3$ where F is resistance in Newtons and v is velocity in $\frac{\text{m}}{\text{s}}$. What is power in kW transmitted through the tow hook to the lorry at a velocity of $10 \frac{\text{m}}{\text{s}}$?

- A. 462.82
- B. 556.34
- C. 67.65
- D. 120.8
- E. 1220.67

Solution:

The resistance to motion consists of 3 components: gravitational, inertial force and F . The gravitational force is given by

$$F_g = m \cdot g \cdot \sin \alpha,$$

where α – is the angle of inclination, and $g = 9.8 \frac{\text{m}}{\text{s}^2}$ – is the acceleration due to gravity.

The inertial force is given by

$$F_i = m \cdot a,$$

where $a = 0.1 \frac{\text{m}}{\text{s}^2}$.

therefore the total force of resistance is given by

$$F_r(v) = F + F_g + F_i = 820 + 0.06 \cdot v^3 + m(g \cdot \sin \alpha + a)$$

Since $\tan \alpha = \frac{1}{10}$, then $\sin \alpha = \frac{1}{\sqrt{101}}$. The power in transmitted through the tow hook is given by

$$W(v) = F_r \cdot v = [820 + 0.06 \cdot v^3 + m(g \cdot \sin \alpha + a)] \cdot v$$

Therefore, the power at a velocity of $10 \frac{\text{m}}{\text{s}}$ is

$$W(10) = \left[820 + 0.06 \cdot \left(10 \frac{\text{m}}{\text{s}} \right)^3 + 42000 \text{ kg} \left(9.8 \frac{\text{m}}{\text{s}^2} \cdot \frac{1}{\sqrt{101}} + 0.1 \frac{\text{m}}{\text{s}^2} \right) \right] \cdot 10 \frac{\text{m}}{\text{s}} = 460 \text{ kW}$$

Therefore the correct answer is A.

Answer: A.