

Question #54140, Physics / Mechanics | Kinematics | Dynamics |

a body falls freely from the top of the tower. If covers 36% of the total height in last second before striking the ground level, the height of the tower is

**Solution:**

The vertical motion of the object is described by the equation:

$d = v_0 t + \frac{1}{2} g t^2$ , where  $d$  – the distance traveled during the last second,  $v_0$  – the velocity of the object travelled 36% of the total height.

At the same time the 36% of height equals:

$0.36h = \frac{1}{2} g t_0^2$ , where  $t_0$  – the time of flight.

Thus,  $t_0^2 = 0.72h/g$ ,

and

$$v_0 = gt_0 = g \times (0.72h/g)^{1/2} = (0.72hg)^{1/2}.$$

$$\text{Then } d = h - 0.36h = 0.64h = (0.72hg)^{1/2} t + \frac{1}{2} g t^2.$$

$$\text{Since } t = 1 \text{ s, } d = 0.64h = (0.72hg)^{1/2} + \frac{1}{2} g.$$

$$\text{Let's } h^{1/2} = x \text{ and } x > 0. \text{ Then, } 0.64x^2 - (0.72g)^{1/2}x - \frac{1}{2}g = 0$$

$$D = 0.72g + 4 \times 0.64 \times 0.5g = 7.056 + 12.544 = 19.6$$

$$D^{1/2} = 4.427,$$

$$x = [(0.72g)^{1/2} \pm 4.427]/1.28 = (2.656 \pm 4.427)/1.28 = 5.53$$

$$\text{Finally } h = x^2 = 30.62 \text{ m}$$

**Answer :** The height of the tower is 30.62 m