

Question #54027, Physics / Solid State Physics |

A crystal has a cubic unit cell of 4.2 Å. Using a wavelength of 1.54 Å at what angle (2) would you expect to measure the (111) peak

Solution:

d-spacing for a cubic cell is defined:

$$1/d^2 = (h^2 + k^2 + l^2)/a^2, \text{ where } a - \text{the unit cell parameter, } d - \text{the separation between lattices.}$$

$$1/d^2 = (3)/17.64 \times 10^{-20} \text{ m}^2 = 0.170068 \times 10^{-20} \text{ m}^2$$

$$d = 2.4249 \times 10^{-10} \text{ m}$$

According to Brag condition the wavelength can be found:

$$2dsin(\Theta) = n\lambda, \text{ where } \Theta - \text{the angle to measure the (111) peak, and } \lambda - \text{the wavelength of X-ray.}$$

$$\sin(\Theta) = 1.54 \times 10^{-10} \text{ m} / (2 \times 2.4249 \times 10^{-10} \text{ m}) = 0.3175$$

$$\Theta = \arcsin(0.3175) = 18.5^\circ$$

Answer:

$$\Theta = \arcsin(0.3175) = 18.5^\circ$$

<http://www.AssignmentExpert.com/>