Answer on Question \#53696, Physics Mechanics Kinematics Dynamics

Define coefficient of thermal conductivity of a material. A cubical thermocole box of side 20 cm and wall thickness 4 cm is full of ice. If outside temperature is 40 ${ }^{\circ} \mathrm{C}$, estimate the amount of ice melted in five hours (K for thermocol is 0.01 J s-1 ${ }^{\circ} \mathrm{C}-1$ and latent heat of fusion of ice is $335 \mathrm{Jg}-1$)

Solution

The quantity of heat flowing into the ice through all six faces of the box is given by Eq.(1)

$$
\begin{equation*}
Q=\frac{K A\left(\theta_{1}-\theta_{2}\right) t}{x} \tag{1}
\end{equation*}
$$

If m be the mass of the ice melted due to this heat and L, the heat of fusion of water, then $Q=m L$.

Thus,

$$
\begin{equation*}
m L=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{x} \tag{2}
\end{equation*}
$$

Here, the area of each face of cubical box $(\text { side })^{2}=20 \times 20=400 \mathrm{~cm}^{2}=0.04 \mathrm{~m}^{2}$

The total area of all six faces of the cubical box, $A=6 \cdot 0.04=0.24 \mathrm{~m}^{2}$

Thickness of each face, $x=0.04 m$

The time for which heat flows, $t=5 h r=5 \cdot 60 \cdot 60=18000 \mathrm{sec}$

The heat of fusion of water $L=335 \mathrm{~J} / \mathrm{gm}$

Thermal conductivity of thermocole, $K=0.01 \mathrm{~J} /\left(\mathrm{sec} \cdot \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$

The temperature difference, $\theta_{1}-\theta_{2}=40-0=40^{\circ} \mathrm{C}$

Mass of the ice melted,
$m=\frac{K A\left(\theta_{1}-\theta_{2}\right) t}{x L}=\frac{0.01 \cdot 0.24 \cdot 40 \cdot 18000}{0.05 \cdot 335}=103.16 \mathrm{gm}=0.103 \mathrm{~kg}$

Answer: $m=\frac{K A\left(\theta_{1}-\theta_{2}\right) t}{x L}=0.103 \mathrm{~kg}$

