Answer on Question \#53683, Physics Mechanics Kinematics Dynamics

Define molar specific heat of a gas at constant volume $\left(\mathrm{C}_{\mathrm{V}}\right)$ and constant pressure $\left(C_{p}\right)$. Obtain the ratio $C_{p} / C v$ for a hydrogen gas using the law of equipartition of energy.

Solution

If $\Delta V=$ const then $Q=\Delta U=\frac{i}{2} n R \Delta T$ (where n number of moles; $R=8.314 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol}$) is the gas constant; i is the number of degrees of freedom), and $C_{V}=\frac{Q}{v \Delta T}=\frac{i}{2} R$.

If $\Delta p=$ const then $Q=\Delta U+A=\frac{i}{2} n R \Delta T+n R \Delta T=\frac{i+2}{2} n R \Delta T$ and $C_{P}=\frac{Q}{v \Delta T}=\frac{i+2}{2} R$.

For a diatomic gas (such as hydrogen), the number of degrees of freedom $i=5$.

So, $C_{P} / C_{V}=\frac{i+2}{i}=\frac{5+2}{5}=7 / 5$.

Answer: $C_{P} / C_{V}=\frac{i+2}{i}=7 / 5$

