Answer on Question \#53587, Physics Mechanics Kinematics Dynamics

A ball is thrown with a speed of $20 \mathrm{~m} \mathrm{~s}-1$ in a direction 30° above the horizontal. Calculate
(i) the maximum height attained by the ball and
(iii) the time taken by the ball to return to the same level
(Take $\mathrm{g}=10 \mathrm{~m} \mathrm{~s}-2$).

Solution

Fig. 1
Maximum lift height is found from the law of conservation of energy. The law of conservation of energy transfer from the position O in A is given by $\mathrm{Eq}(1)$.

$$
\begin{equation*}
\frac{M v_{0}^{2}}{2}=M g H_{\max }+\frac{M v_{0 x}^{2}}{2} \tag{1}
\end{equation*}
$$

where $v_{0 x}=v_{0} \cos \alpha ; M$ is the mass of the ball.
Then
$H_{\text {max }}=\frac{v_{0}^{2}-v_{0 x}^{2}}{2 g}=\frac{v_{0}^{2}-v_{0}^{2} \cos ^{2} \alpha}{2 g}=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}=\frac{20^{2} \sin ^{2} 30^{\circ}}{2 \cdot 10}=5 m$
Time of the ball motion from point O to point A is the same as from point A to point B (the symmetry of the trajectory).

Time of the ball motion from point O to point A (see Fig.1):

$$
\begin{equation*}
v_{0 y}-g t_{0}=0 \Rightarrow t_{0}=v_{0 y} / g=v_{0} \sin \alpha / g \tag{2}
\end{equation*}
$$

The time taken by the ball to return to the same level is given by Eq.(3)
$t=2 t_{0}=\frac{2 v_{0} \sin \alpha}{g}=\frac{2 \cdot 20 \cdot \sin 30^{\circ}}{10}=2 \mathrm{~s}$
Answer: $H_{\text {max }}=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}=5 m ; t=\frac{2 v_{0} \sin \alpha}{g}=2 s$.
http://www.AssignmentExpert.com/

