Answer on Question \#53586, Physics Mechanics Kinematics Dynamics

A body starts from rest in a straight line under a force causing a constant acceleration of $2 \mathrm{~m} \mathrm{~s}-2$. After 10 s the force is removed and the body comes to rest in 20 seconds. Find the distance travelled by the body in the last 20 s.

Solution

After 10 s the force is removed the speed of the body is $v_{1}=a_{1} \cdot t_{1}$.
In the last 20s. $v_{1}+a_{2} t_{2}=0$
The second acceleration is $a_{2}=-v_{1} / t_{2}=-a_{1} t_{1} / t_{2}$
The distance travelled by the body in the last 20 s is
$s=v_{1} t_{2}+\frac{a_{2} t_{2}^{2}}{2}=\left(a_{1} \cdot t_{1}\right) t_{2}+\frac{\left(-a_{1} t_{1} / t_{2}\right) t_{2}^{2}}{2}=a_{1} t_{1} t_{2}-a_{1} t_{1} t_{2} / 2=a_{1} t_{1} t_{2} / 2=2\left(\mathrm{~m} / \mathrm{s}^{2}\right) \cdot 10 \mathrm{~s} \cdot 20 \mathrm{~s}=400 \mathrm{~m}$
Answer: $s=a_{1} t_{1} t_{2} / 2=400 \mathrm{~m}$

