## Answer on Question\#53380-Physics - Mechanics - Kinematics - Dynamics

On a vehicle crash simulation, a car of mass $m=1200 \mathrm{~kg}$ is travelling at a velocity of $v_{m}=40 \mathrm{mph}$ in the easterly direction when it is hit by a truck of mass $M=3300 \mathrm{~kg}$ travelling at a velocity of $v_{M}=25 \mathrm{mph}$ from the westerly direction. Assuming that the two vehicles become entangled calculate in $\mathrm{m} / \mathrm{s}$ their combined velocity after the crash.

Take $1.61 \mathrm{~km} / \mathrm{hr}=1 \mathrm{mph}$

## Solution:

Let's choose the east direction as the positive one. According to the law of conservation of momentum we obtain the resultant momentum of entangled vehicles

$$
(M+m) \cdot v=M \cdot v_{M}-m \cdot v_{m},
$$

where $v$-is the speed of the vehicles after collision. Therefore

$$
v=\frac{M \cdot v_{M}-m \cdot v_{m}}{(M+m)}=\frac{3300 \mathrm{~kg} \cdot 25 \mathrm{mph}-1200 \mathrm{~kg} \cdot 40 \mathrm{mph}}{3300 \mathrm{~kg}+1200 \mathrm{~kg}}=7.67 \mathrm{mph}=3.43 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: $3.43 \frac{\mathrm{~m}}{\mathrm{~s}}$ in the easterly direction.

