Answer on Question\#53294 - Physics - Field Theory

A very long nonconducting cylinder of radius ρ and length $L(\rho<L)$ passes a uniform charge of density α. Determine the electric field outside of cylinder.

Solution:

According to the Gauss's law (considering that the cylinder is very long) the electric flux through the very long coaxial cylindrical surface is equal to the inner charge divided by ε_{0}. Let's consider a piece of such cylinder with radius R and length l. Since the surface area of this piece is $A=2 \pi R l$, the electric flux through this surface is

$$
\Phi=A \cdot E(R)=2 \pi R l \cdot E(R),
$$

where $E(R)$ - is the electric field created by the charged cylinder. Electrical charge surrounded by this surface (if $R>\rho$) is $Q=2 \pi \rho l \cdot \alpha$. Therefore we obtain

$$
\begin{gathered}
\Phi=\frac{Q}{\varepsilon_{0}} \\
2 \pi R l \cdot E(R)=\frac{2 \pi \rho l \cdot \alpha}{\varepsilon_{0}} \\
E(R)=\frac{\rho}{R} \frac{\alpha}{\varepsilon_{0}}
\end{gathered}
$$

For $R<\rho$ there are no inner electrical charge, thus

$$
E(R)=0, \quad R<\rho
$$

Answer:

$$
E(R)= \begin{cases}0, & R<\rho \\ \frac{\rho}{R} \frac{\alpha}{\varepsilon_{0}}, & R>\rho\end{cases}
$$

