Answer on Question\#53285-Physics - Electromagnetism

The Fraunhofer diffraction pattern of a circular aperture (of radius $a=0.5 \mathrm{~mm}$) is observed on the local plane of a convex lens of focal length $F=20 \mathrm{~cm}$. Calculate the radii of the first and the second dark rings. Assume $\lambda=5.5 \times 10^{-8} \mathrm{~cm}$.

Solution:

The intensity of the light in the focal plane is given by

$$
I(\theta)=I_{0}\left(2 \frac{J_{1}(k a \sin \theta)}{k a \sin \theta}\right)^{2}
$$

where I_{0} - is the intensity in the plane of the circuit, θ - is the angle between the optical axis of the lens and the direction of the point under consideration in the focal plane, and $k=\frac{2 \pi}{\lambda}$ - is the wavenumber.
$\sin \theta$ can be rewritten in terms of the radius of the dark ring and the focal length as follows

$$
\sin \theta=\frac{R}{F}
$$

Therefore

$$
I(R)=I_{0}\left(2 \frac{J_{1}\left(\frac{k a R}{F}\right)}{\frac{k a R}{F}}\right)^{2}
$$

The dark ring occurs when $I(R)=0$. First two dark rings are defined by the $2^{\text {nd }}$ and the $3^{\text {rd }}$ zeros of the Bessel function J_{1}. These zeros are

$$
\mu_{2}=3.83, \quad \mu_{3}=7.01
$$

Therefore

$$
\begin{gathered}
\frac{k a R_{1}}{F}=\mu_{2}, \quad \frac{k a R_{2}}{F}=\mu_{3} \\
R_{1}=\frac{F \mu_{2}}{k a}=\frac{F \lambda \mu_{2}}{2 \pi a}=\frac{20 \mathrm{~cm} \cdot 5.5 \times 10^{-8} \mathrm{~cm} \cdot 3.83}{2 \pi \cdot 0.5 \mathrm{~mm}}=0.13 \mu \mathrm{~m} \\
R_{2}=\frac{F \mu_{3}}{k a}=\frac{F \lambda \mu_{3}}{2 \pi a}=\frac{20 \mathrm{~cm} \cdot 5.5 \times 10^{-8} \mathrm{~cm} \cdot 7.01}{2 \pi \cdot 0.5 \mathrm{~mm}}=0.25 \mu \mathrm{~m}
\end{gathered}
$$

Answer: $R_{1}=0.13 \mu \mathrm{~m}, R_{2}=0.25 \mu \mathrm{~m}$.

