Answer on Question \#53268, Physics / Mechanics | Kinematics | Dynamics

A rigid body exists in n dimensional space, how many coordinates are needed to specify the position and orientation in this space?

Solution:

The position and orientation of a rigid body in three-dimensional space is defined by three components of translation and three components of rotation, which means that it has six degrees of freedom.

If a body is rigid, then its position can be uniquely specified by a number of generalized coordinates equal to the number of degrees of freedom.

The position of an rigid body in n-dimensional space is defined by the rigid transformation,

$$
[\mathrm{T}]=[\mathrm{A}, \mathrm{~d}],
$$

where d is an n-dimensional translation and A is an $n \times n$ rotation matrix, which has n translational degrees of freedom and $n(n-1) / 2$ rotational degrees of freedom. The number of rotational degrees of freedom comes from the dimension of the rotation group $S O(n)$.

Answer: $n+n(n-1) / 2$
http://www.AssignmentExpert.com/

