Answer on Question \#53229-Physics - Mechanics - Kinematics - Dynamics

Mario is doing pull-ups about $l=1$ meter from the end of the hour hand of a clock on the Big Ben Tower in London. Mario weighs $W_{M}=650 \mathrm{~N}$ and the Hour hand weighs $W=5000 \mathrm{~N}$ and is uniform in density. The time is 3 pm . The Hour hand is $L=5$ meters long. What is the net Torque around the pin that attaches the hour hand to the clock face?

Solution:

The forces which act on the Hour hand are shown in the figure above. Since the pull-ups is the periodic process the net force acting on the Hour hand due to Mario's weight is W_{M}. Therefore the net torque around the pin is given by

$$
\tau=\frac{L}{2} W+W_{M}(L-l)=\frac{5 \mathrm{~m}}{2} 5000 \mathrm{~N}+650 \mathrm{~N}(5 \mathrm{~m}-1 \mathrm{~m})=15.1 \mathrm{kN} \cdot \mathrm{~m}
$$

Answer: $15.1 \mathrm{kN} \cdot \mathrm{m}$.

