Question \#53228, Physics / Mechanics | Kinematics | Dynamics |

A powerful motorcycle can produce an acceleration of $3.00 \mathrm{~m} / \mathrm{s} 2$ while traveling at $90.0 \mathrm{~km} / \mathrm{h}$. At that speed, the forces resisting motion, including friction and air resistance, total 450 N . What force does the motorcycle exert backward on the ground to produce its acceleration if its mass with rider is 240 kg ?

Answer:

The force which pulls the motorcycle forward is defined according the second Newton law:
$\mathrm{F}=\mathrm{a} \times \mathrm{m}$, where $\mathrm{a}-$ acceleration, and $\mathrm{m}-$ the mass with rider.
Thus, $\mathrm{F}=3 \mathrm{~m} / \mathrm{s}^{2} \times 240 \mathrm{~kg}=720 \mathrm{~N}$

Since the forces resisting motion exert in opposite direction to this, the total force exerting backward on the ground equals:
$F_{t}=F+F_{r}$, where F_{r} - the forces resisting motion.
Then $F_{t}=720 \mathrm{~N}+450 \mathrm{~N}=1170 \mathrm{~N}$

