Question \#53212, Physics / Other

If a box weighing 536 N is pulled forward at constant speed by a force of 150 N at an angle of 37.0 degrees with the ground, what normal force does the supporting surface exert on the box?

Answer:

According to the third Newton's law the weight (W) of the box equals the sum of the normal force $\left(F_{n}\right)$ and the projection of the pulling force to the normal $\left(F_{p}\right)$.
$W=F_{n}+F_{p}$
Taking into account that $F_{p}=F \times \sin \left(37^{\circ}\right)$ (where F - the pulling force) the F_{n} can be calculated as follows:
$F_{n}=W-F_{p}=W-F \times \sin \left(37^{\circ}\right)$

Thus, the normal force equals:
$\mathrm{F}_{\mathrm{n}}=536 \mathrm{~N}-150 \mathrm{~N} \times 0.6018=445.73 \mathrm{~N}$

