Question #53208, Physics / Mechanics | Kinematics | Dynamics

A ladybug with a velocity of 10.0 mm/s [W] crawls on a chair that is being pulled [W 50° N] at 40.0 mm/s. What is the velocity of the ladybug relative to the ground?

Answer:

The figure for the velocities can be drawn as follows:

Depicted parameters are:

 v_1 is the velocity of the ladybug and v_2 is the velocity of chair.

The projection of v_2 to W direction is defined by the equation:

$$v_2(W) = \cos 50^\circ \times v_2$$

Thus, for the West direction, the velocity of the ladybug relative to the ground equals:

 $v(W) = v_1 + v_2(W) = v_1 + \cos 50^\circ \times v_2$,

v(W) = 10 mm/s + 0.642788×40 mm/s = 35.71 mm/s

For the North direction is defined: $v(N) = v_1(N) + v_2(N)$.

Taking into account that v_1 (N) = 0, v_2 (N) = sin 50° × v_2 , the velocity in the North direction equals:

 $v(N) = v_1(N) + \sin 50^\circ \times v_2 = 0 + 0.766 \times 40 \text{ mm/s} = 30.64 \text{ mm/s}.$

The total the velocity of the ladybug relative to the ground is determined by the equation:

$$v^2 = v(N)^2 + v(W)^2$$

Thus, $v = \sqrt{v(N)^2 + v(W)^2} = \sqrt{1275.2041 + 938.8096} = 47.053 \text{ mm/s}$

http://www.AssignmentExpert.com/