Question \#53208, Physics / Mechanics | Kinematics | Dynamics

A ladybug with a velocity of $10.0 \mathrm{~mm} / \mathrm{s}$ [W] crawls on a chair that is being pulled [W $50^{\circ} \mathrm{N}$] at 40.0 mm / s. What is the velocity of the ladybug relative to the ground?

Answer:

The figure for the velocities can be drawn as follows:

Depicted parameters are:
v_{1} is the velocity of the ladybug and v_{2} is the velocity of chair.

The projection of v_{2} to W direction is defined by the equation:
$v_{2}(W)=\cos 50^{\circ} \times v_{2}$

Thus, for the West direction, the velocity of the ladybug relative to the ground equals:
$v(W)=v_{1}+v_{2}(W)=v_{1}+\cos 50^{\circ} \times v_{2}$,
$\mathrm{v}(\mathrm{W})=10 \mathrm{~mm} / \mathrm{s}+0.642788 \times 40 \mathrm{~mm} / \mathrm{s}=35.71 \mathrm{~mm} / \mathrm{s}$

For the North direction is defined: $v(N)=v_{1}(N)+v_{2}(N)$.
Taking into account that $\mathrm{v}_{1}(\mathrm{~N})=0, \mathrm{v}_{2}(\mathrm{~N})=\sin 50^{\circ} \times \mathrm{v}_{2}$, the velocity in the North direction equals:
$\mathrm{v}(\mathrm{N})=\mathrm{v}_{1}(\mathrm{~N})+\sin 50^{\circ} \times \mathrm{v}_{2}=0+0.766 \times 40 \mathrm{~mm} / \mathrm{s}=30.64 \mathrm{~mm} / \mathrm{s}$.
The total the velocity of the ladybug relative to the ground is determined by the equation:
$v^{2}=v(N)^{2}+v(W)^{2}$

Thus, $v=\sqrt{v(N) 2+v(W) 2}=\sqrt{1275.2041+938.8096}=47.053 \mathrm{~mm} / \mathrm{s}$

