Answer on Question \#53207, Physics / Mechanics

A man of height 1.2 m walks away from a lamp hanging at height of 4 m above ground. If man walks with a speed of $2.8 \mathrm{~m} / \mathrm{s}$ determine velocity of the tip of mans shadow.

Solution:

Let the lamp be at A at height H from the ground, that is $A B=H$. Let the man be initially at B, below the lamp, his height being equal to $B D=h$, so that the tip of his shadow is at B. Let the man walk from B to F in time t with speed v, the shadow will go up to C in the same time t with speed v^{\prime} :

$$
\begin{gathered}
B F=v t \\
B C=v^{\prime} t
\end{gathered}
$$

From similar triangles EFC and ABC

$$
\begin{aligned}
& \frac{F C}{B C}=\frac{E F}{A B}=\frac{h}{H} \\
& \frac{v^{\prime} t-v t}{v^{\prime} t}=\frac{h}{H}
\end{aligned}
$$

or

$$
v^{\prime}=\frac{H v}{H-h}=\frac{4 * 2.8}{4-1.2}=4 \mathrm{~m} / \mathrm{s}
$$

Answer: $4 \mathrm{~m} / \mathrm{s}$

