Answer on Question\#53161 - Physics - Electric Circuits

A potentiometer wire has length $l=4 \mathrm{~m}$ and resistance $R=8 \mathrm{ohm}$. The resistance r that must be connected in series with the wire and an accumulator of e.m.f $\varepsilon=2 \mathrm{~V}$, so as to get a potential gradient $F=1 \mathrm{mV}$ per cm on the wire is- A) 44 ohm B) 48 ohm C) $32 \mathrm{ohm} \mathrm{D)} 40 \mathrm{ohm}$

Solution:

The potential drop through the potentiometer should be

$$
V_{R}=F \cdot l
$$

Since the potentiometer is connected in series with resistance r, this potential drop can also be expressed through the e.m.f:

$$
V_{R}=\frac{R}{R+r} \varepsilon
$$

Therefore we obtain an equation for r :

$$
\begin{gathered}
\frac{R}{R+r} \varepsilon=F \cdot l \\
r=\frac{R(\varepsilon-F \cdot l)}{F \cdot l}=\frac{8 \Omega\left(2 \mathrm{~V}-1 \frac{\mathrm{mV}}{\mathrm{~cm}} \cdot 4 \mathrm{~m}\right)}{1 \frac{\mathrm{mV}}{\mathrm{~cm}} \cdot 4 \mathrm{~m}}=39992 \Omega
\end{gathered}
$$

Answer: 39992Ω.

