Answer on Question\#53146-Physics - Mechanics - Kinematics - Dynamics

Which physics formulas do I need to focus on to determine whether or not an amusement park swing ride rotating at its max speed can hold a $m=50 \mathrm{lb}$. child safely if, while stationary, the swing can hold up a $M=200 \mathrm{lb}$. man? Is the centripetal force what I am supposed to be finding, and then I compare it to the stationary hanging tension when the 200 lb . weight is on it?

Solution:

Actually, you should consider the (vector) sum of centrifugal force $\boldsymbol{F}_{\boldsymbol{c}}$ and the force due to gravity $m \boldsymbol{g}$. This sum should be balanced by the tension \boldsymbol{T} of the rope or chain of the swing. The magnitude of this tension force should be equal to the weight of the 200 lb . man.

The magnitude of the centrifugal force is given by

$$
F_{c}=m \omega^{2} r,
$$

where ω - is the angular frequency of the swing's rotation. Therefore the magnitude of the tension force is given by

$$
T=\sqrt{(m g)^{2}+F_{c}^{2}}=m \sqrt{g^{2}+\omega^{4} r^{2}}
$$

If the length of the rope is l then due to similarity we obtain

$$
\begin{gathered}
\frac{T}{F_{c}}=\frac{l}{r} \\
\frac{\sqrt{g^{2}+\omega^{4} r^{2}}}{\omega^{2} r}=\frac{l}{r} \\
r=\sqrt{l^{2}-\frac{g^{2}}{\omega^{4}}}
\end{gathered}
$$

Therefore the tension force is

$$
T=m \sqrt{g^{2}+\omega^{4}\left(l^{2}-\frac{g^{2}}{\omega^{4}}\right)}=m \omega^{2} l
$$

To determine whether or not the swing rotating at its max speed can hold a child you should substitute angular frequency into the previous expression and compare it with the weight of the man $M g$. If it's greater than the man's weight the swing may not hold the child, if not then the swing will hold the child.

