Answer on Question\#53115 - Physics - Field theory

A charge Q is placed at the centre of a square if electric field intensity due to the charge at the corners of the square is ' E ' and the intensity at the mid-point of the side of square is 'e' then ratio of E / e will be?

NOTE- the Electric field mentioned here are different at both the points.

Solution:

Let the side of the square be a, then the distance from the centre of the square to its corner is $d_{c}=\frac{a}{\sqrt{2}}$ and the distance from the centre to the mid-point of the side is $d_{m}=\frac{a}{2}$. Therefore, the electric field intensity due to the charge at the corner of the square is given by

$$
E=\frac{Q}{4 \pi \varepsilon_{0} d_{c}^{2}}
$$

and at the mid-point of the side

$$
e=\frac{Q}{4 \pi \varepsilon_{0} d_{m}^{2}}
$$

So

$$
\frac{E}{e}=\frac{d_{m}^{2}}{d_{c}^{2}}=\frac{\left(\frac{a}{2}\right)^{2}}{\left(\frac{a}{\sqrt{2}}\right)^{2}}=\frac{1}{2}
$$

Answer: 1/2.

