Answer on Question \#53095-Physics-Field Theory

Two equal point charges A and B are R distance apart. A third point charge placed on perpendicular bisector at a distance " d " from the centre will experience max electrostatic force when

Solution

Let r be the distance between A and C , the third charge. We have $r^{2}=\frac{R^{2}}{4}+D^{2}$.
The force $F(D)$ between them is proportional to $\frac{1}{r^{2}}$. If α is the angle between $A B$ and $A C$ than $\sin (\alpha)=\frac{D}{r}$ and the component of F in vertical direction is $F(D) \sin (\alpha)$. So we have for the vertical component of $F(D)$:

$$
F(D) \sin (\alpha)=\frac{k 1}{r^{2}} \frac{D}{r}=\frac{k D}{\left(\frac{R^{2}}{4}+D^{2}\right)^{\frac{3}{2}}}
$$

$\frac{d F(D)}{d D}=0$ as condition for extremum leads to

$$
\frac{R^{2}}{4}+D^{2}=3 D^{2} \text { or } D=\frac{R}{2 \sqrt{2}} .
$$

Answer: $\frac{R}{2 \sqrt{2}}$.

