Answer on Question \#53047, Physics / Other

Task:
1.A room of 1.5 litres contains gas with pressure $10^{\wedge} 5$ Pa.If the gas particle has average speed of $750 \mathrm{~m} / \mathrm{s}$, then gas mass that trapped in the room is...gram
A.0.8
B.0.7
C. 0.6
D.0.5
E.0.4

Answer: A.0.8

$\mathrm{m}=3 \mathrm{pV} / \mathrm{u}^{2}=3 * 1.5^{*} 10^{-3} * 10^{5} /\left(750^{2}\right)=0.0008 \mathrm{~kg}=0.8 \mathrm{gram}$
2.An object is placed 375 mm in front of a concave mirror with focus 250 mm . If the object is moved 25 mm away from the mirror, then it's shadow will shift to... mm
A. 80
B. 82
C. 83
D. 84
E. 85

Answer: C. 83
Focus $\mathrm{f}=250 \mathrm{~mm}, \mathrm{~V}_{1}=375 \mathrm{~mm}, \mathrm{~V}_{2}=400 \mathrm{~mm}, \mathrm{~V}_{1}$ and V_{2} are objects distance
$\left(1 / U_{1}\right)+\left(1 / V_{1}\right)=1 / f$, where U_{1} is image distance.
So $1 / U_{1}=(1 / \mathrm{f})-\left(1 / \mathrm{V}_{1}\right)=(1 / 250)-(1 / 375)=(1 / 750), \mathrm{U}_{1}=750 \mathrm{~mm}$
So $1 / U_{2}=(1 / \mathrm{f})-\left(1 / V_{2}\right)=(1 / 250)-(1 / 400)=(3 / 2000), U_{2}=2000 / 3 \mathrm{~mm}$
then it's shadow will shift to $U_{1}-U_{2}=700-2000 / 3=83.3 \mathrm{~mm}$
3.If purple light frequency of $10^{\wedge} 16 \mathrm{~Hz}$ falls on a metal surface with verge energy $1 / 3$ of energy quanta of the purple light. The kinetic energy of the released electron is.... $10^{\wedge}-18 \mathrm{~J}$
A.6.6
B.4.4
C.3.3
D.2.2
E.1.1

Answer: D.2.2
The kinetic energy of the electron will be equal to $1 / 3$ of the energy of a quantum of the light. According to the Planck-Einstein relation, the energy of the light is hv, where h is Planck's constant and v is the frequency of the light. So...
$\mathrm{E}=6.626 \times 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s} *(1 / 3) * 10^{16} / \mathrm{s}=2.20 * 10^{-18} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s} 2$
So assuming the numbers are in Joules, the answer is $D, 2.2$
http://www.AssignmentExpert.com/

