Answer on Question \#53039, Physics / Other

A uniform plank $A B 30 \mathrm{~m}$ long weighing 100 N is pivoted at points P, Q which are 5 m from the ends A and B respectively. A boy of weight 250 N stands at a point $D 1 m$ away from Q and the arrangement is in equilibrium. Determine the reaction R1 R2 at the supports

Solution:

$A P=B Q=5 \mathrm{~m}$
$Q D=1 \mathrm{~m}$
$P C=15-5=10 \mathrm{~m}$

Let R_{1} and R_{2} be the reaction forces at the left and right supports.

Taking moments of all forces about the point of contact of the left support,

$$
\begin{gathered}
W * P C+W_{b o y} * P D-R_{2} * P Q=0 \\
100 * 10+250 * 21-20 R_{2}=0
\end{gathered}
$$

Thus,

$$
R_{2}=\frac{100 * 10+250 * 21}{20}=312.5 \mathrm{~N}
$$

Taking moments of forces about the point of contact of the right support,

$$
\begin{gathered}
R_{1} * P Q-W * C Q+W_{b o y} * Q D=0 \\
20 R_{1}-100 * 10+250 * 1=0
\end{gathered}
$$

Thus,

$$
R_{1}=\frac{100 * 10-250 * 1}{20}=37.5 \mathrm{~N}
$$

Answer: $R_{1}=37.5 \mathrm{~N} ; R_{2}=312.5 \mathrm{~N}$.

