

## Question #53009, Physics / Mechanics | Kinematics | Dynamics |

Problem: A liquid at 20 °C has a density of 798.4 kg/m<sup>3</sup> and a kinematic viscosity of 2.3 · 10<sup>-6</sup> m<sup>2</sup>/s. Determine its (i) specific weight and (ii) absolute viscosity.

### Answer the question:

(1) Specific weight:

$$\gamma = \rho \cdot g,$$

where  $\rho$  – density,  $g = 9,8 \text{ N/kg}$  - acceleration of gravity,

$$\gamma = 798,4 \text{ kg/m}^3 \cdot 9,8 \text{ N/kg} = 7824,32 \text{ kg/m}^3.$$

(2) Absolute viscosity:

$$\eta = \nu \cdot \rho,$$

where  $\nu$  - kinematic viscosity,

$$\eta = 2.3 \cdot 10^{-6} \text{ m}^2/\text{s} \cdot 798,4 \text{ kg/m}^3 = 2075,84 \text{ m}^2/\text{s}.$$