Answer on Question \#53005-Physics - Mechanics - Kinematics - Dynamics
Find the change in volume of $V_{0}=1 \mathrm{~m}^{3}$ of water when subjected to pressure increase of $\Delta P=35 \mathrm{MPa}$. The bulk modulus of elasticity of water is $K=2.2 \times 10^{9} \mathrm{~Pa}$. Also estimate the volume of water after the pressure is applied.

Solution:

The bulk modulus of K of the liquid is given by

$$
K=-V_{0} \frac{\Delta P}{\Delta V^{\prime}}
$$

where ΔV - is the increase in the volume of the fluid. Since $V_{0}=1 \mathrm{~m}^{3}, K=2.2 \times 10^{9} \mathrm{~Pa}$, and $\Delta P=35 \mathrm{MPa}$, we obtain

$$
\Delta V=-\frac{V_{0} \cdot \Delta P}{K}=-\frac{1 \mathrm{~m}^{3} \cdot 35 \mathrm{MPa}}{2.2 \times 10^{9} \mathrm{~Pa}}=-15.9 \times 10^{-6} \mathrm{~m}^{3}
$$

The final volume is

$$
V_{f}=V_{0}+\Delta V=1 \mathrm{~m}^{3}-15.9 \times 10^{-6} \mathrm{~m}^{3}=0.9999841 \mathrm{~m}^{3}
$$

Answer: $\Delta V=-15.9 \times 10^{-6} \mathrm{~m}^{3}, V_{f}=0.9999841 \mathrm{~m}^{3}$.

