Answer on Question \#53003, Physics / Mechanics | Kinematics | Dynamics

For $\mathrm{K}=2.2 \times 10^{9} \mathrm{~Pa}$ for the bulk modulus of elasticity of water, what pressure is required to reduce its volume by 0.5% ?

Solution:

We have the following given data.
Bulk modulus of elasticity of water $(\mathrm{K})=2.2 \times 10^{9} \mathrm{~Pa}=2.2 \mathrm{Gpa}$
Reduction in volume $\left(\frac{\Delta V}{V}\right)=-0.5 \%=-0.005$
We need to determine the pressure (ΔP).
We know that the modulus of elasticity is equal

$$
K=-\frac{\Delta P}{\frac{\Delta V}{V}}
$$

Thus, we can substitute the given values according the condition of the task into the noted above formula.

$$
2.2 \times 10^{9}=-\frac{\Delta \mathrm{P}}{-0.005}
$$

Now, we can simplify the obtained equation in order to find the value of pressure which is required to reduce its volume by 0.5%.

$$
\begin{gathered}
\Delta \mathrm{P}=\left(2.2 \times 10^{9}\right) \cdot 0.005=11000 \mathrm{KPa} \\
\Delta \mathrm{P}=11000 \mathrm{KPa}
\end{gathered}
$$

