Answer on Question \#52997-Physics - Mechanics - Kinematics - Dynamics
A liquid with specific gravity of $S G=1.2$ fills a volume. If the mass in the volume is $m=$ 200 kg , what is the magnitude V of the volume?

Solution:

The specific gravity is given by

$$
S G=\frac{\rho}{\rho_{H_{2} \mathrm{O}}}=\frac{m / V}{\rho_{\mathrm{H}_{2} \mathrm{O}}}
$$

where $\rho=\frac{m}{V}$ - is the density of the liquid, and $\rho_{\mathrm{H}_{2} \mathrm{O}}$ - is the density of the water. Since $S G=1.2$, and $\rho_{H_{2} 0}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$, we obtain

$$
V=\frac{m}{S G \cdot \rho_{H_{2} 0}}=\frac{200 \mathrm{~kg}}{1.2 \cdot 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=0.167 \mathrm{~m}^{3}
$$

Answer: $0.167 \mathrm{~m}^{3}$.

