Answer on Question \#52994-Physics-Mechanics-Kinematics-Dynamics

If the specific weight of the liquid is $8000 \mathrm{~N} / \mathrm{m} 3$, what is its density, specific volume, and specific gravity (S.G)?

Solution

$$
\frac{W}{V}=8000 \frac{\mathrm{~N}}{\mathrm{~m}^{3}} .
$$

The density is

$$
\rho=\frac{W}{V g}=\frac{8000 \frac{N}{\mathrm{~m}^{3}}}{9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=815 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} .
$$

The specific volume is

$$
v_{g}=\frac{1}{\rho}=\frac{1}{815 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=0.00123 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} .
$$

The specific gravity is

$$
S G=\frac{\rho}{\rho_{\text {water }}}=\frac{815 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=0.815 .
$$

