Answer on Question 52989, Physics, Mechanics | Kinematics | Dynamics

Question:

A reservoir of carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ has a mass of 500 kg and a volume of $0.315 \mathrm{~m}^{3}$. Find the carbon tetrachloride weight, density, specific weight, specific volume and specific gravity. It is given that the specific weight of water at $4^{\circ} \mathrm{C}$ is $9810 \mathrm{~N} / \mathrm{m}^{3}$.

Solution:

1) Let's find the weight of carbon tetrachloride:

$$
W=m g=500 \mathrm{~kg} \cdot 9.81 \mathrm{~m} / \mathrm{s}^{2}=4905 \mathrm{~N}=4.905 \mathrm{kN} .
$$

2) The density of carbon tetrachloride is its mass per unit volume:

$$
\rho=m / V=500 \mathrm{~kg} / 0.315 \mathrm{~m}^{3}=1587 \mathrm{~kg} / \mathrm{m}^{3} .
$$

3) The specific weight of carbon tetrachloride is its weight per unit volume:

$$
\gamma=W / V=4.905 \cdot 10^{3} \mathrm{~N} / 0.315 \mathrm{~m}^{3}=15.57 \mathrm{kN} / \mathrm{m}^{3} .
$$

4) The specific volume of carbon tetrachloride is the ratio of its volume to its mass:

$$
v=V / m=\rho^{-1}=\left(1587 \mathrm{~kg} / \mathrm{m}^{3}\right)^{-1}=0.00063 \mathrm{~m}^{3} / \mathrm{kg} .
$$

5) The specific gravity is defined as the ratio of the density of fluid to the density of a standard fluid. For liquids, the standard fluid is taken water. So, let's obtain the specific gravity of carbon tetrachloride:

$$
\text { s. } g .=\rho / \rho_{\text {water at } 4^{\circ} \mathrm{C}}=1587 \mathrm{~kg} / \mathrm{m}^{3} / 1000 \mathrm{~kg} / \mathrm{m}^{3}=1.59 .
$$

But, we can also define the specific gravity as the ratio of the specific weight of fluid to the specific weight of a standard fluid:

$$
\text { s.g. }=\gamma / \gamma_{\text {water at } 4^{\circ} \mathrm{C}}=15.57 \cdot 10^{3} \mathrm{~N} / \mathrm{m}^{3} / 9.81 \cdot 10^{3} \mathrm{~N} / \mathrm{m}^{3}=1.59 .
$$

Answer:

1) $W=4.905 \mathrm{kN}$.
2) $\rho=1587 \mathrm{~kg} / \mathrm{m}^{3}$.
3) $\gamma=15.57 \mathrm{kN} / \mathrm{m}^{3}$.
4) $v=0.00063 \mathrm{~m}^{3} / \mathrm{kg}$.
5) $s . g .=1.59$.
