Answer on Question \#52984, Physics / Molecular Physics | Thermodynamics

1. 200 g of water heated from 17.0 degrees Celsius to 23.5 degrees Celsius. What is the amount of thermal energy that been transferred to that mass?

Solution

$$
Q=m c \Delta t=0.2 \times 4.187 \times(23.5-17)=5.4431 \mathrm{KJ}
$$

Answer : 5.4431 KJ.

2. Beaker contains 360.4 g of whiten the liquid state at 100 degrees Celsius. How much energy in KJ is required to convert the liquid water to water vapours?

Solution

$$
Q=L m=2256 \times 0.3604=813.0624 \mathrm{KJ}
$$

Answer : 813.0624 KJ.
3. what is the amount of heat energy required to change a 40.0 g ice cube at -20.0 degrees Celsius to water at 50.0 degrees Celsius?

Solution

If melting point of ice $\mathrm{T}=0^{\circ} \mathrm{C}$.
$Q=Q_{1}+Q_{2}+Q_{3} ; \quad Q_{1}=m c_{i c e} \Delta t=0.04 \times 2060 \times 20=1648 \mathrm{~J} ;$
$Q_{2}=\lambda m=335000 \times 0.04=13400 \mathrm{~J} ; \quad Q_{3}=m c_{\text {water }} \Delta t=0.04 \times 4187 \times 50=8374 \mathrm{~J} ;$

$$
Q=1648+13400+8374=23422 J
$$

Answer: 23422 J
4. 500 g mass of copper at 15.0 degrees Celsius, copper gains 650 joules of thermal energy. What would be final temperature of that mass? ($\mathrm{c}=0.386 \mathrm{j} / \mathrm{g}$ degrees Celsius)

Solution

$$
\begin{aligned}
Q=m c \Delta t & =m c\left(t_{2}-t_{1}\right) ; \quad t_{2}=\frac{Q}{m c}+t_{1} ; \\
t_{2} & =\frac{650}{500 \times 0.386}+15=18.368^{\circ} \mathrm{C}
\end{aligned}
$$

Answer : $18.368{ }^{\circ} \mathrm{C}$

> http://www.AssignmentExpert.com/

