Answer on Question\#52865-Physics - Mechanics - Kinematics - Dynamics
A $m=4 \mathrm{~kg}$ ball having velocity $\boldsymbol{v}_{\boldsymbol{i}}=(7 \boldsymbol{i}+6 \boldsymbol{j}) \frac{\mathrm{m}}{\mathrm{s}}$ collides and bounces off a wall with a velocity of $\boldsymbol{v}_{\boldsymbol{f}}=(-3 \boldsymbol{i}+6 \boldsymbol{j}) \frac{\mathrm{m}}{\mathrm{s}}$. The ball is in contact with the wall for $\Delta t=0.01 \mathrm{~s}$. In unit-vector notation, what are a) the impulse and b) the average force on the ball from the wall?

Solution:

The change in impulse is given by

$$
\Delta \boldsymbol{p}=m\left(\boldsymbol{v}_{\boldsymbol{f}}-\boldsymbol{v}_{\boldsymbol{i}}\right)=4 \mathrm{~kg} \cdot(-3 \boldsymbol{i}+6 \boldsymbol{j}-(7 \boldsymbol{i}+6 \boldsymbol{j})) \frac{\mathrm{m}}{\mathrm{~s}}=(-40 \boldsymbol{i}+0 \boldsymbol{j}) \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}}
$$

The average force on the ball from wall could be found from the following relation

$$
\boldsymbol{F}_{\boldsymbol{a} v} \cdot \Delta t=\Delta \boldsymbol{p}
$$

Therefore,

$$
\boldsymbol{F}_{a v}=\frac{\Delta \boldsymbol{p}}{\Delta t}=\frac{(-40 \boldsymbol{i}+0 \boldsymbol{j}) \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}}}{0.01 \mathrm{~s}}=(-4 \boldsymbol{i}+0 \boldsymbol{j}) \mathrm{kN}
$$

Answer:

a) $(-40 \boldsymbol{i}+0 \boldsymbol{j}) \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}}$
b) $(-4 \boldsymbol{i}+0 \boldsymbol{j}) \mathrm{kN}$

