

Answer on Question#52857 - Physics - Atomic Physics

An object of mass, $m = 5\text{kg}$, at the origin has a velocity of $\mathbf{v}_i = (12\mathbf{i} - 18\mathbf{j}) \frac{\text{m}}{\text{s}}$ at $t = 0$. It is accelerated at a constant rate for 5 seconds after which it has a velocity of $\mathbf{v}_f = (5\mathbf{i} - 7\mathbf{j}) \frac{\text{m}}{\text{s}}$.

1. What is the magnitude of the resultant force acting on the object during this time interval?
2. How far is it from the origin after 3 seconds?
3. What is the speed after 3 seconds?

Solution:

1. Action of the force on the object changes its momentum as follows

$$\int_{t_i}^{t_f} \mathbf{F} dt = \Delta \mathbf{p},$$

where t_i , t_f – are initial and final times, \mathbf{F} – is the resultant force, $\mathbf{p} = m\mathbf{v}$ – is the momentum of the object. Since the \mathbf{F} is constant (object is accelerated at a constant rate), $t_i = 0$, $t_f = 5\text{s}$, $\Delta \mathbf{p} = m(\mathbf{v}_f - \mathbf{v}_i)$, we obtain

$$\mathbf{F}(t_f - t_i) = m(\mathbf{v}_f - \mathbf{v}_i)$$

$$\mathbf{F} = \frac{m(\mathbf{v}_f - \mathbf{v}_i)}{t_f - t_i} = \frac{5\text{kg} \cdot (5\mathbf{i} - 7\mathbf{j} - (12\mathbf{i} - 18\mathbf{j})) \frac{\text{m}}{\text{s}}}{5\text{s} - 0} = (-7\mathbf{i} + 11\mathbf{j})\text{N}$$

The magnitude of the force:

$$|\mathbf{F}| = \sqrt{(-7)^2 + (11)^2}\text{N} = \sqrt{170}\text{N} = 13\text{N}$$

2. The displacement is given by

$$\mathbf{s}(t) = \mathbf{s}_0 + \mathbf{v}_i \cdot t + \frac{\mathbf{a} \cdot t^2}{2},$$

where $\mathbf{s}_0 = \mathbf{0}$ – is the initial position of the object, $\mathbf{a} = \frac{\mathbf{F}}{m} = \frac{(-7\mathbf{i} + 11\mathbf{j})\text{N}}{5\text{kg}} = (-1.4\mathbf{i} + 2.2\mathbf{j}) \frac{\text{m}}{\text{s}^2}$ – is the acceleration of the object, t – is the elapsed time.

Since $t = 3\text{s}$, we obtain

$$\mathbf{s}(3\text{s}) = (12\mathbf{i} - 18\mathbf{j}) \frac{\text{m}}{\text{s}} \cdot 3\text{s} + \frac{(-1.4\mathbf{i} + 2.2\mathbf{j}) \frac{\text{m}}{\text{s}^2} \cdot (3\text{s})^2}{2} = (29.7\mathbf{i} + 63.9\mathbf{j})\text{m}$$

The magnitude of \mathbf{s} is:

$$|\mathbf{s}| = \sqrt{(29.7)^2 + (63.9)^2}\text{m} = \sqrt{4965.3}\text{m} = 70.5\text{m}$$

3. The dependence of velocity on time is given by

$$\mathbf{v}(t) = \mathbf{v}_i + \mathbf{a} \cdot t,$$

where t – is elapsed time. Since $t = 3\text{s}$, we obtain

$$\mathbf{v}(3\text{s}) = (12\mathbf{i} - 18\mathbf{j}) \frac{\text{m}}{\text{s}} + (-1.4\mathbf{i} + 2.2\mathbf{j}) \frac{\text{m}}{\text{s}^2} \cdot 3\text{s} = (7.8\mathbf{i} - 11.4\mathbf{j}) \frac{\text{m}}{\text{s}}$$

The speed is given by the magnitude of this vector

$$v(3\text{s}) = |\mathbf{v}(3\text{s})| = \sqrt{(7.8)^2 + (-11.4)^2} \frac{\text{m}}{\text{s}} = \sqrt{190.8} \frac{\text{m}}{\text{s}} = 13.8 \frac{\text{m}}{\text{s}}$$

Answer:

1. 13N
2. 70.5m
3. $13.8 \frac{m}{s}$

<http://www.AssignmentExpert.com/>