Answer on Question\#52857-Physics - Atomic Physics

An object of mass, $m=5 \mathrm{~kg}$, at the origin has a velocity of $\boldsymbol{v}_{\boldsymbol{i}}=(12 \boldsymbol{i}-18 \boldsymbol{j}) \frac{\mathrm{m}}{\mathrm{s}}$ at $t=0$. It is accelerated at a constant rate for 5 seconds after which it has a velocity of $\boldsymbol{v}_{\boldsymbol{f}}=(5 \boldsymbol{i}-7 \boldsymbol{j}) \frac{\mathrm{m}}{\mathrm{s}}$.

1. What is the magnitude of the resultant force acting on the object during this time interval?
2. How far is it from the origin after 3 seconds?
3. What is the speed after 3 seconds?

Solution:

1. Action of the force on the object changes its momentum as follows

$$
\int_{t_{i}}^{t_{f}} \boldsymbol{F} d t=\Delta \boldsymbol{p}
$$

where t_{i}, t_{f} - are initial and final times, \boldsymbol{F} - is the resultant force, $\boldsymbol{p}=m \boldsymbol{v}$ - is the momentum of the object. Since the \boldsymbol{F} is constant (object is accelerated at a constant rate), $t_{i}=0, t_{f}=5 \mathrm{~s}, \Delta \boldsymbol{p}=m\left(\boldsymbol{v}_{\boldsymbol{f}}-\boldsymbol{v}_{\boldsymbol{i}}\right)$, we obtain

$$
\boldsymbol{F}\left(t_{f}-t_{i}\right)=m\left(\boldsymbol{v}_{\boldsymbol{f}}-\boldsymbol{v}_{\boldsymbol{i}}\right)
$$

$$
F=\frac{m\left(\boldsymbol{v}_{f}-\boldsymbol{v}_{i}\right)}{t_{f}-t_{i}}=\frac{5 \mathrm{~kg} \cdot(5 \boldsymbol{i}-7 \boldsymbol{j}-(12 \boldsymbol{i}-18 \boldsymbol{j})) \frac{\mathrm{m}}{\mathrm{~s}}}{5 \mathrm{~s}-0}=(-7 \boldsymbol{i}+11 \boldsymbol{j}) \mathrm{N}
$$

The magnitude of the force:

$$
|\boldsymbol{F}|=\sqrt{(-7)^{2}+(11)^{2}} \mathrm{~N}=\sqrt{170} \mathrm{~N}=13 \mathrm{~N}
$$

2. The displacement is given by

$$
\boldsymbol{s}(t)=\boldsymbol{s}_{\mathbf{0}}+\boldsymbol{v}_{\boldsymbol{i}} \cdot t+\frac{\boldsymbol{a} \cdot t^{2}}{2}
$$

where $\boldsymbol{s}_{\mathbf{0}}=\mathbf{0}$ - is the initial position of the object, $\boldsymbol{a}=\frac{\boldsymbol{F}}{m}=\frac{(-7 \boldsymbol{i}+11 j) \mathrm{N}}{5 \mathrm{~kg}}=(-1.4 \boldsymbol{i}+$ $2.2 j) \frac{\mathrm{m}}{\mathrm{s}^{2}}$ - is the acceleration of the object, t - is the elapsed time. Since $t=3 \mathrm{~s}$, we obtain

$$
\boldsymbol{s}(3 \mathrm{~s})=(12 \boldsymbol{i}-18 \boldsymbol{j}) \frac{\mathrm{m}}{\mathrm{~s}} \cdot 3 \mathrm{~s}+\frac{(-1.4 \boldsymbol{i}+2.2 \boldsymbol{j}) \frac{\mathrm{m}}{\mathrm{~s}^{2}} \cdot(3 \mathrm{~s})^{2}}{2}=(29.7 \boldsymbol{i}+63.9 \boldsymbol{j}) \mathrm{m}
$$

The magnitude of \boldsymbol{s} is:

$$
|\boldsymbol{s}|=\sqrt{(29.7)^{2}+(63.9)^{2}} \mathrm{~m}=\sqrt{4965.3} \mathrm{~m}=70.5 \mathrm{~m}
$$

3. The dependence of velocity on time is given by

$$
\boldsymbol{v}(t)=\boldsymbol{v}_{\boldsymbol{i}}+\boldsymbol{a} \cdot t
$$

where t - is elapsed time. Since $t=3 \mathrm{~s}$, we obtain

$$
\boldsymbol{v}(3 \mathrm{~s})=(12 \boldsymbol{i}-18 \boldsymbol{j}) \frac{\mathrm{m}}{\mathrm{~s}}+(-1.4 \boldsymbol{i}+2.2 \boldsymbol{j}) \frac{\mathrm{m}}{\mathrm{~s}^{2}} \cdot 3 \mathrm{~s}=(7.8 \boldsymbol{i}-11.4 \boldsymbol{j}) \frac{\mathrm{m}}{\mathrm{~s}}
$$

The speed is given by the magnitude of this vector

$$
v(3 \mathrm{~s})=|v(3 \mathrm{~s})|=\sqrt{(7.8)^{2}+(-11.4)^{2}} \frac{\mathrm{~m}}{\mathrm{~s}}=\sqrt{190.8} \frac{\mathrm{~m}}{\mathrm{~s}}=13.8 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer:

1. 13 N
2. 70.5 m
3. $13.8 \frac{\mathrm{~m}}{\mathrm{~s}}$
http://www.AssignmentExpert.com/
