Question

1) A 1 kg box starts up a 2 degrees incline with a speed of $5 \mathrm{~m} / \mathrm{s}$. How far will the box slide up the incline if the coefficient of kinetic friction between the box and incline is 0.4 ?
2) A disc starting from rest rotates about its axis with constant angular acceleration. In 3 s , it rotates 27 rad. During that time, determine a) the angular acceleration b) the instantaneous angular velocity of the disc at the end of the 3 s .

Answer

1)

The second Newton's Law

$$
\begin{gathered}
O X:-m a=-F_{r}-m g * \sin (\alpha) \\
O Y: N=m g * \cos (\alpha) \\
F_{r}=\mu N \rightarrow a=g(\sin (\alpha)+\mu * \cos (\alpha))
\end{gathered}
$$

The equation for instantaneous velocity

$$
v_{f}=0=v_{0}-a t \rightarrow a=\frac{v_{0}}{t}
$$

From the last two equations we obtain

$$
t=\frac{v_{0}}{g(\sin (\alpha)+\mu * \cos (\alpha))}
$$

And distance that box reached

$$
x=v_{0} t-\frac{a t^{2}}{2}=\frac{v_{0} t}{2}=\frac{v_{0}^{2}}{2 g(\sin (\alpha)+\mu * \cos (\alpha))} \approx 2.93 \mathrm{~m}
$$

2) a)

The equation of motion for rotational motion

$$
\varphi=\varphi_{0}+\omega_{0} t+\frac{\beta t^{2}}{2}
$$

In this case we obtain

$$
\varphi=\frac{\beta t^{2}}{2} \rightarrow \boldsymbol{\beta}=\frac{2 \varphi}{t^{2}}=\mathbf{6} \frac{\boldsymbol{r a d}}{\boldsymbol{s}^{\mathbf{2}}}
$$

2) b)

The equation for instantaneous velocity

$$
\omega_{3}=\beta t=18 \frac{r a d}{s}
$$

http://www.AssignmentExpert.com/

