Answer on Question\#52853-Physics - Mechanics - Kinematics - Dynamics

18

$5 /(20 \mathrm{pts})$ A yo-yo of mass M, rotational inertia I, and inner and outer radii r and R, is gently pulled by a string with tension T on a rough floor as shown in Figure 1. Calculate the linear acceleration of the yo-yo.

Figure 1

Solution:

Equation of motion, written about the point of contact with the surface, is given by

$$
I_{c} \varepsilon=T \cdot(R-r),
$$

where I_{C} - is the moment of inertia about the point of contact, ε - is the angular acceleration, $T \cdot(R-r)$ - is the torque of the force \boldsymbol{T} about point of the contact. According to the parallel axis theorem the moment of inertia about the point of contact is given by

$$
I_{c}=I+M \cdot R^{2}
$$

Therefore, the angular acceleration is given by

$$
\varepsilon=\frac{T \cdot(R-r)}{I_{c}}=\frac{T \cdot(R-r)}{I+M \cdot R^{2}}
$$

The linear acceleration a and the angular acceleration are connected by the following relation

$$
a=\varepsilon \cdot R
$$

Therefore,

$$
a=\frac{T \cdot(R-r)}{I+M \cdot R^{2}} \cdot R=\frac{T \cdot R \cdot(R-r)}{I+M \cdot R^{2}}
$$

Answer: $\frac{T \cdot R \cdot(R-r)}{I+M \cdot R^{2}}$.

