


Answer on Question #52822-Physics-Other

A yo-yo of Mass M , moment of inertia I , and inner and outer radii r and R , is gently pulled by a string with tension T as shown in the diagram below. Find the linear acceleration.

Solution

We know there is a normal and weight acting on the yo-yo but these do not create torques as they operate on or through the Centre of Mass. There is non-maximum static friction acting but we must determine its direction. First if there were no T , there would be no friction. T is twisting the yo-yo counterclockwise pushing the yo-yo into the surface. The surface reacts by pushing back. The free-body diagram looks like

Here I have guessed that the yo-yo will roll backwards. Notice that my choice of a and α are consistent.

I apply Newton's Second Law

$$\Sigma F_x = ma_x; \Sigma F_y = ma_y; \Sigma \tau_{cm} = I_{cm}a_{cm}$$

$$T - f_s = -Ma; N - Mg = 0; rT - Rf_s = I\alpha$$

We also know $a = Ra$.

The torque equation becomes can be solved for f_s

$$f_s = \left(\frac{r}{R}\right)T - \left(\frac{I}{R^2}\right)a. \quad (1)$$

We substitute this into the x-component equation

$$T - \left[\left(\frac{r}{R} \right) T - \left(\frac{I}{R^2} \right) a \right] = - Ma. \quad (2)$$

We bring the term involving a from the left to the right and solve for a in terms of T ,

$$\frac{T(R-r)}{R} = - \left(M + \frac{I}{R^2} \right) a. \quad (3)$$

or

$$a = - \frac{(R-r)R}{MR^2 + I} T.$$

The fact that a is negative tells me that my guess about the direction of a and α are wrong. The acceleration is forward and counterclockwise.

<http://www.AssignmentExpert.com/>