## Question

A 4 kg ball having velocity $(7 \mathrm{i}+6 \mathrm{j}) \mathrm{m} / \mathrm{s}$ collides and bounces off a wall with a velocity of $(-3 \mathrm{i}+6 \mathrm{j})$ $\mathrm{m} / \mathrm{s}$. The ball is in contact with the wall for 0.01 s . In unit-vector notation, what are a) the impulse and b) the average force on the ball from the wall.

## Answer

$$
m=4 \mathrm{~kg} ; \overrightarrow{v_{1}}=7 \vec{\imath}+6 \vec{\jmath} \frac{\mathrm{~m}}{\mathrm{~s}} ; \overrightarrow{v_{2}}=-3 \vec{\imath}+6 \vec{\jmath} \frac{\mathrm{~m}}{\mathrm{~s}} ; \quad \Delta t=0.01 \mathrm{~s}
$$

a) For the impulse we obtain
$\vec{I}=\overrightarrow{\Delta p}=\overrightarrow{p_{2}}-\overrightarrow{p_{1}}=m\left(\overrightarrow{v_{2}}-\overrightarrow{v_{1}}\right)=4((-3-7) \vec{\imath}+(6-6) \vec{\jmath}) \frac{\mathrm{kg} * m}{\mathrm{~s}}=-\mathbf{4 0} * \overrightarrow{\mathbf{\imath}} \frac{\boldsymbol{k g} * \boldsymbol{m}}{\mathrm{~s}}$
b)
$\vec{F} \Delta t=\vec{I} \rightarrow \overrightarrow{\boldsymbol{F}}=\frac{\vec{I}}{\Delta t}=-4000 * \overrightarrow{\boldsymbol{i}} \mathrm{~N}$

