Answer on question \#52604, Physics, Electric Circuits

Question A 3 micro coloumb capacitor is charged to a potential of 300 V and 2 micro coloumb capacitor us charged to 200 V . The capacitor are then connected in parallel with plates of opposite polarity joined together. What amount of charge will flow, when the plates are so connected?

Solution The difference is $q_{n}=q_{1}-q_{2}=1 \mu \mathrm{C}$. So, this charge will distribute on two parallel capacitors. How much on each? Total capacity after connection is

$$
C_{n}=C_{1}+C_{2}=\frac{q_{1}}{U_{1}}+\frac{q_{2}}{U_{2}}=\frac{3 \cdot 10^{-6}}{300}+\frac{2 \cdot 10^{-6}}{200}=2 \cdot 10^{-8} \mathrm{~F}
$$

So, new potential on each is

$$
U_{n 1}=U_{n 2}=\frac{q_{n}}{C_{n}}=\frac{1 \cdot 10^{-6}}{2 \cdot 10^{-8}}=50 \mathrm{~V}
$$

Charge on first capacitor after connection became

$$
q_{1 n}=U_{n 1} \cdot C_{1}=50 \cdot 1 \cdot 10^{-8}=0.5 \mu C
$$

Hence, charge flow is $3-0.5=2.5 \mu \mathrm{C}$.

