

Answer on question #52486, Physics, Relativity

Question An unstable particle at rest breaks up into two fragments of unequal mass. The mass of the lighter fragment is equal to $2.50 \cdot 10^{-28}$ kg and that of the heavier fragment is $1.67 \cdot 10^{-27}$ kg. If the lighter fragment has a speed of $0.893c$ after the breakup, what is the speed of the heavier fragment?

Solution Relativistic momentum is

$$p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}$$

The momentums of fragments should be equal. Hence, momentum of heavier fragment m_2 is

$$p = \frac{m_1 0.893c}{\sqrt{1 - 0.893^2}} \approx 1.984m_1c$$

From this we can find velocity of heavier fragment v_2

$$\begin{aligned} p &= \frac{m_2 v_2}{\sqrt{1 - \frac{v_2^2}{c^2}}} \\ p^2 \left(1 - \frac{v_2^2}{c^2}\right) &= m_2^2 v_2^2 \\ v_2^2 (m_2^2 + p^2/c^2) &= p^2 \\ v_2 = \sqrt{\frac{p^2}{(m_2 + p^2/c^2)}} &= \frac{1.984m_1c}{\sqrt{m_2^2 + 1.984^2m_1^2}} \approx 0.285c \end{aligned}$$