Answer on Question \#52426, Physics, Mechanics | Kinematics | Dynamics

A batsman hits a ball at 45 degree angle with horizontal and with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The ball started to going over the bowler. A fielder from the mid-field ran to catch it. But the fielder could not reach in time. That's why the ball crosses the boundary line and it became a 6 run for the batsman. The ball travels 35 m at field. If the fielder is able to take catch at a height of 3 m , and if the fielder could reach in time to the boundary line, would he be able to catch the ball?

Solution:

Given:
$x_{1}=35 \mathrm{~m}$,
$\theta=45^{\circ}$,
$v_{0}=20 \mathrm{~m} / \mathrm{s}$,
$h=$?

Neglecting air resistance, the projectile is subject to a constant acceleration $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$, due to gravity, which is directed vertically downwards.

Equations related to trajectory motion (projectile motion) are given by

$$
\begin{gathered}
\text { Horizontal distance, } \quad x=v_{0 x} t \\
\text { Vertical distance, } \quad y=v_{0 y} t-\frac{1}{2} g t^{2}
\end{gathered}
$$

where v_{0} is the initial velocity.
We have

$$
x_{1}=35 \mathrm{~m}
$$

Thus, the time of ball's flight to the boundary line

$$
\begin{gathered}
t=\frac{x_{1}}{v_{0 x}}=\frac{x_{1}}{v_{0} \cos \theta}=\frac{35}{20 * \cos 45^{\circ}}=2.475 \mathrm{~s} \\
\text { Vertical distance, } \\
h=y=v_{0} \sin \theta t-\frac{1}{2} g t^{2}=20 \cdot \sin 45^{\circ} \cdot 2.475-\frac{9.8 \cdot 2.475^{2}}{2}=4.986 \mathrm{~m}
\end{gathered}
$$

Hence, at the boundary line ball will be at $\approx 5 \mathrm{~m}$ height.

Answer: The fielder would not be able to catch the ball.

