Answer on Question \#52424, Physics, Mechanics | Kinematics | Dynamics

A wheel of mass 0.80 kg and radius 0.30 m is rolling without slipping up a plane 15 degrees to the horizontal . at some instant it has an angular speed of $12 \mathrm{rad} / \mathrm{s}$, and it comes momentarily to rest after rolling a further 2.5 revolutions up the plane. 1 Use the conservation of energy to find the moment of inertia of the wheel.

Solution:

Conservation of energy gives:

$$
\begin{gathered}
P E_{\text {gravity }}=K E_{\text {translational }}+K E_{\text {rotational }} \\
m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}
\end{gathered}
$$

For rolling without slipping, $\omega=v / r$.
The height is

$$
h=L \sin \theta=2 \pi r N \sin \theta=2 \pi * 0.30 * 2.5 * \sin 15^{\circ}=1.22 \mathrm{~m}
$$

Thus, for the moment of inertia of the wheel

$$
\begin{gathered}
\frac{1}{2} I \omega^{2}=m\left(g h-\frac{1}{2} v^{2}\right) \\
I=\frac{2 m}{\omega^{2}}\left(g h-\frac{1}{2} v^{2}\right)=\frac{2 m}{\omega^{2}}\left(g h-\frac{1}{2} \omega^{2} r^{2}\right) \\
I=\frac{2 * 0.80}{12^{2}}\left(9.8 * 1.22-\frac{1}{2} * 12^{2} * 0.3^{2}\right)=0.061 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{gathered}
$$

Answer: $0.061 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

