Answer on Question \#52383, Physics, Mechanics | Kinematics | Dynamics

A cricket bowler can bowl a 158 g ball at $147 \mathrm{~km} / \mathrm{hr}$. Calculate the kinetic energy of this bowl and use this to compare to a bowling ball that weighs 7 kg . How fast would the bowling ball need to be bowled to have the same kinetic energy as the cricket ball? (Answer to $1 \mathrm{~d} . \mathrm{p}$)

Solution:

The following equation is used to represent the kinetic energy (KE) of an object.

$$
K E=\frac{1}{2} m v^{2}
$$

where $m=$ mass of object,
$\mathrm{v}=$ speed of object.
The speed of cricket ball is

$$
v=147 \frac{\mathrm{~km}}{\mathrm{hr}}=147 * \frac{1000}{3600} \mathrm{~m} / \mathrm{s}=40.83 \mathrm{~m} / \mathrm{s}
$$

The kinetic energy of cricket bowl is

$$
K E_{\text {cricket }}=\frac{1}{2} * 0.158 * 40.83^{2}=131.70 \mathrm{~J}
$$

The kinetic energy of bowling bowl is

$$
K E_{\text {bowling }}=\frac{1}{2} m v^{2}=\frac{7}{2} v^{2}=K E_{\text {cricket }}
$$

Thus, the speed of the bowling ball is

$$
v=\sqrt{\frac{2}{7} K E_{\text {cricket }}}=\sqrt{\frac{2}{7} * 131.7}=6.13 \mathrm{~m} / \mathrm{s}=6.13 * 3.6=22.1 \mathrm{~km} / \mathrm{hr}
$$

Answer: 22.1 km/hr

