

Answer on Question 52380, Physics, Optics

Question:

A convex mirror has a radius of 20cm . An object is placed 30cm in front of the mirror. Determine where the image will appear.

- a) -4.5cm
- b) -5.5cm
- c) -6.5cm
- d) -7.5cm

Solution:

Let's first find the focal length of the convex mirror. By the definition, the focal length of the curved mirror is half a radius of curvature:

$$f = \frac{R}{2} = \frac{20\text{cm}}{2} = 10\text{cm}.$$

Then, from the mirror equation we have:

$$\begin{aligned}\frac{1}{d_{image}} + \frac{1}{d_{object}} &= \frac{1}{-f}, \\ \frac{1}{d_{image}} + \frac{1}{30\text{cm}} &= \frac{1}{-10\text{cm}}, \\ \frac{1}{d_{image}} &= -\frac{1}{10\text{cm}} - \frac{1}{30\text{cm}} = -\frac{4}{30\text{cm}} = -\frac{2}{15\text{cm}} = -\frac{1}{7.5\text{cm}}, \\ d_{image} &= -7.5\text{cm}.\end{aligned}$$

The negative sign of d_{image} indicate that image is located behind the convex mirror.

Answer:

- d) -7.5cm

