Answer on Question \#52354, Physics, Optics

A double convex lens of focal length 20 cm is made of glass of refractive index $3 / 2$. When placed completely in water (${ }_{a} \mu_{w}=4 / 3$) its focal length will be..

1) 80 cm . 2) 15 cm . 3) 17.7 cm . 4) $22.5 \mathrm{~cm} _\mathrm{w}$

Solution:
The focal length of a lens can be calculated from the lensmaker's equation:

$$
\frac{1}{f}=\frac{\left(\mu_{2}-\mu_{1}\right)}{\mu_{1}}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

In first case (lens in air)

$$
\frac{1}{f_{a}}=\frac{(3 / 2-1)}{1}\left(\frac{1}{R}+\frac{1}{R}\right)
$$

In first case (lens in water)

$$
\begin{gathered}
\frac{1}{f_{w}}=\frac{(3 / 2-4 / 3)}{4 / 3}\left(\frac{1}{R}+\frac{1}{R}\right) \\
\frac{f_{w}}{f_{a}}=\frac{\left(\frac{3}{2}-1\right)}{\frac{3}{2}-\frac{4}{3}} * \frac{4}{3}=4 \\
f_{w}=4 * f_{a}=4 * 20 \mathrm{~cm}=80 \mathrm{~cm}
\end{gathered}
$$

Answer: 1) 80 cm

