Answer on Question \#52317-Physics-Optics

A prism is made of glass of unknown refractive index. A parallel beam of light is incident on a face of the prism. The angle of minimum deviation is measured to be 40°. What is the refractive index of material of prism? The refracting angle of the prism is 60°. If the prism is placed in water (refractive index 1.33), predict the new angle of minimum deviation of a parallel beam of light.

Solution

Angle of minimum deviation is $\delta_{m}=40^{\circ}$.
Angle of the prism is $A=60^{\circ}$.

Refractive index of water is $\mu=1.33$.
Refractive index of the material of the prism is μ^{\prime}.
The angle of deviation is related to refractive index as:

$$
\mu^{\prime}=\frac{\sin \frac{\left(A+\delta_{m}\right)}{2}}{\sin \frac{A}{2}}=\frac{\sin \frac{\left(60^{\circ}+40^{\circ}\right)}{2}}{\sin \frac{60^{\circ}}{2}}=\frac{\sin 50^{\circ}}{\sin 30^{\circ}}=1.532
$$

Hence, the refractive index of the material of the prism is 1.532.
Since the prism is placed in water, let δ_{m}^{\prime} be the new angle of minimum deviation for the same prism.
The refractive index of glass with respect to water is given by the relation:

$$
\begin{gathered}
\mu_{g}^{w}=\frac{\mu^{\prime}}{\mu}=\frac{\sin \frac{\left(A+\delta_{m}^{\prime}\right)}{2}}{\sin \frac{A}{2}} \\
\sin \frac{\left(A+{\delta^{\prime}}_{m}\right)}{2}=\frac{\mu^{\prime}}{\mu} \sin \frac{A}{2} \\
\sin \frac{\left(A+\delta_{m}^{\prime}\right)}{2}=\frac{1.532}{1.33} \sin \frac{60^{\circ}}{2}=0.5759 . \\
\frac{\left(A+\delta_{m}^{\prime}\right)}{2}=\sin ^{-1} 0.5759=35.16^{\circ} \\
60^{\circ}+\delta_{m}^{\prime}=70.32^{\circ} . \\
\delta_{m}^{\prime}=10.32^{\circ} .
\end{gathered}
$$

Hence, the new minimum angle of deviation is 10.32°.

