Answer on Question 52231, Physics, Optics

Question:

Light of wavelength 620 nm falls on a double slit, and the first bright fringe of the interference pattern is seen at an angle of 15 degrees from the central maximum. Find the separation between the slits.

Solution:

Let's write the diffraction grating equation:

$$
d \sin \theta=m \lambda,
$$

where, $d \sin \theta=r_{2}-r_{1}$ is the path difference of rays, that come from the slits.

If this path difference is exactly one wavelength λ or an integer number of wavelengths, then the two waves arrive at the screen in phase and there is a constructive interference, resulting in a bright area on the screen. For the first bright fringe, $m=1$, and we obtain:

$$
d=\frac{\lambda}{\sin \theta}=\frac{620 \cdot 10^{-9} \mathrm{~m}}{\sin 15^{\circ}}=2.4 \cdot 10^{-6} \mathrm{~m}=2.4 \mu \mathrm{~m} .
$$

Answer:

$d=2.4 \mu m$.

